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Abstract: The globally exponential synchronization of diffusion recurrent fuzzy neural networks (FNNs) with
time-delays and impulses on time scales is investigated. By applying Lyapunov function and inequality skills, we
establish some sufficient conditions to guarantee the globally exponential synchronization of diffusion recurrent
FNNs with time-delays and impulses on time scales. One example is given to illustrate the effectiveness of our
results.
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1 Introduction
Artificial neural networks have complex dynamical
behaviors such as stability, synchronization, almost
periodic attractors, etc. we can refer to [1–40, 43–44]
and references cited therein. The study on the neural
networks has attracted much attention because of its
potential applications such as robust stability, associa-
tive memory, image processing, pattern recognition,
optimization calculation, information processing, etc..

Synchronization have attracted much attention for
the important applications in varies aries after it is pro-
posed by Pecora and Carrol [1–2]. The principle of
drive-response synchronization is this: a driver system
sent a signal through a channel to a responder system,
which uses this signal to synchronize itself with the
driver. Namely, the response system is influenced by
the behavior of the drive system, but the drive system
is independent of the response one. In recently years,
many results concerning synchronization problem of
time delayed neural networks have been investigated
in the literature [1–14].

However, in mathematical modeling of real world
problems, we will encounter some other inconve-
nience, for example, the complexity and the uncer-
tainty or vagueness. Fuzzy theory is considered
as a more suitable setting for the sake of taking
vagueness into consideration. Based on traditional
cellular neural networks (CNNs), T. Yang and L.
B. Yang proposed the fuzzy CNNs (FCNNs) [25],
which integrates fuzzy logic into the structure of
traditional CNNs and maintains local connectedness
among cells. Unlike previous CNNs structures, FC-

NNs have fuzzy logic between its template input
and/or output besides the sum of product operation.
FCNNs are very useful paradigm for image process-
ing problems, which is a cornerstone in image pro-
cessing and pattern recognition. In addition, many
evolutionary processes in nature are characterized by
the fact that their states are subject to sudden changes
at certain moments and therefore can be described by
impulsive system. Therefore, it is necessary to con-
sider both the fuzzy logic and delay effect on dynam-
ical behaviors of neural networks with impulses.

As is well known, both in biological and man-
made neural networks, strictly speaking, diffusion ef-
fects can not be avoided in the neural network models
when electrons are moving in asymmetric electromag-
netic fields, so we must consider that the activations
vary in space as well as in time. Many researchers
have studied the dynamical properties of continuous
time diffusion neural networks (see, for example [26–
34]).

Recently, neural networks on time scales have
been presented and studied, see, for e.g. [35–40],
which can unify the continuous and discrete situa-
tions. To the best of our knowledge, few authors
have considered the synchronization of time-delayed
diffusion recurrent fuzzy neural networks with im-
pulses and Dirichlet boundary conditions on time
scales which is a challenging and important problem
in theories and applications. Therefore, in this pa-
per, we will investigate the globally exponential syn-
chronization of time-delayed diffusion recurrent fuzzy
neural networks (FNNs) with impulses and Dirichlet
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boundary conditions on time scales as follows:

u△i (t, x) =
m∑
k=1

∂
∂xk

(
aik

∂ui
∂xk

)
− biui(t, x)

+fi

(
n∑
j=1

cijuj(t− τij , x) + Ii

)
+fi

(
n∧
j=1

pijuj(t− τij , x) + Ii

)
+fi

(
n∨
j=1

qijuj(t− τij , x) + Ii

)
+

n∑
j=1

dijυj +
n∧
j=1

Sijυj

+
n∨
j=1

Tijυj , t ̸= tk, x ∈ Ω,

△ui(tk, x) = ui(t
+
k , x)− ui(t

−
k , x)

= ϑikui(tk, x), t = tk, x ∈ Ω,
ui(s, x) = ϕi(s, x), (s, x) ∈ [−τ, 0]T × Ω,
ui(t, x) = 0, (t, x) ∈ [0,∞)T × ∂Ω,

(1)

where i = 1, 2, . . . , n. n is the number of neurons
in the network. T ⊂ R is a time scale and T ∩
[0,+∞) , [0,+∞)T is unbounded and T∩ [−τ, 0] ,
[τ, 0]T ̸= ϕ. τij is the constant time delay and τ =
max1≤i,j≤n{τij}. The impulsive point set {tk}∞k=0
satisfies 0 6 t0 < t1 < . . . < tk < . . . , tk →
+∞, as k → +∞, and x(t+k ) = limt→t+k

x(t) and

x(t−k ) = x(tk). {ϑik|i = 1, 2, ..., n, k ∈ N} de-
notes impulsive gain set. x = (x1, x2, . . . , xn)

T

∈ Ω ⊂ Rm and Ω = {x = (x1, x2, . . . , xn)
T : |xi|

< li, i = 1, 2, . . . ,m} is a bounded compact set
with smooth boundary ∂Ω in space Rm, u(t, x) =(
u1(t, x), u2(t, x), . . . , un(t, x)

)T
: T × Ω → Rn

and ui(t, x) is the state of the ith neurons at time t
and in space x. The smooth function aik > 0 cor-
responds to the transmission diffusion operator along
with the ith unit. bi > 0 represents the rate with
which the ith unit will reset its potential to the rest-
ing state in isolation when disconnected from the net-
work and external inputs. cij denotes the strength
of the jth unit on the ith unit at time t and in space
x. dij is the bias connection strengths of jth unit
on the ith unit at time t and in space x. fj(·) de-
notes the activation function of the jth unit on the ith
unit at time t and in space x.

∨
and

∧
denote the

fuzzy AND and fuzzy OR operation, respectively. υi
and Ii denote input and bias of the ith neuron, re-
spectively. pij , qij , Sij , Tij are elements of fuzzy
feedback MIN template, fuzzy feedback MAX tem-
plate, fuzzy feed-forward MIN template and fuzzy
feed-forward MAX template, respectively. ϕ(t, x) =(
ϕ1(t, x), ϕ2(t, x), . . . , ϕn(t, x),

)T
: [−τ, 0]T×Ω →

Rn is rd-continuous with respect to t ∈ [−τ, 0]T and
continuous with respect to x ∈ Ω, respectively.

The remain of this paper is organized as follows.
In Section 2, some notations and basic theorem or
lemmas on time scales are given. In Section 3, the
main results of globally exponential synchronization
is obtained. In Section 4, one example is given to il-
lustrate the effectiveness of our results. Finally, some
brief conclusions are presented in Section 5.

2 Preliminaries
In this section, we will firstly state some basic defini-
tions and lemmas are presented on time scales which
are used in what follows.

Let T be a nonempty closed subset (time scale) of
R. The forward and backward jump operator ρ, σ :
T → T and the graininess µ :→ R+ are defined,
respectively, by σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T \ {m}, otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T \ {m}, otherwise Tk = T.
Definition 1. ([41]) A function f : T → R is called
regulated provided its right-side limits exit (finite) at
all right-side points in T and its left-side limits ex-
ist(finite) at all left-side points in T.

Definition 2. ([41]) A function f : T → R is called
rd-continuous provided it is continuous at right-dense
point in T and its left-side limits exist (finite) at left-
dense points in T. The set of rd-continuous function
f : T → R will be denoted by Crd = Crd(T) =
Crd(T,R).
Definition 3. ([41]) Assume f : T → R and t ∈ Tk.
Then we define f△(t) to be the number (if it exist)
with the property that given any ε > 0 there exists a
neighborhood U of t (i.e.,U = (t−∆, t+∆)∩T for
some ∆ > 0) such that

|[f(σ(t))− f(s)]− f△(t)[σ(t)− s]| < ε|σ(t)− s|
for all s ∈ U. We call f△(t) the delta (or Hilger)
derivative of f at t. The set of function f : T →
R that is differentiable and whose derivative ia rd-
continuous is denote by C1

rd = C1
rd(T) = C1

rd(R,T).
If f is continuous, then f is rd-continuous, If f is
rd-continuous, then f is regulated. If f is delta dif-
ferentiable with region of differentiation D such that
F△(t) = f(t) for all t ∈ D.

Definition 4. ([41]) Let f be regulated,then there exist
a function F which is delta differentiable with region
of differentiation D such that F△(t) = f(t) for all
t ∈ D.
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Definition 5. ([41]) Assume f : T → R is a regulated
function. Any function F as in Lemma 4 is called a
△-antiderivative of f .We define the indefinite integral
of a regulated function f by∫

f(t)△t = F (t) + C,

where C is an arbitrary constant and F is a △-
antiderivative of f. We define the Cauchy integral by∫ b
a f(s)△s = F (b)− F (a) for all a, b ∈ T.

A function F : T → R is called an antiderivative
of f : T → R provided F△(t) = f(t) for all t ∈ Tk.

Lemma 6. ([41]) If a, b ∈ T, α, β ∈ R and f, g ∈
C(T,R), then

(i)
∫ b
a [αf(t) + βg(t)]△t = α

∫ b
a f(t)△t +

β
∫ b
a g(t)△t,

(ii) if f(t) ≥ 0 for all a ≤ t ≤ b, then
∫ b
a f(t)△t ≥

0,

(iii) if |f(t)| ≤ g(t) on [a, b) , {t ∈ T : a ≤ t < b},
then |

∫ b
a f(t)△t| ≤

∫ b
a g(t)△t.

A function p : T → R is called regressive if
1 + µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all re-
gressive and rd-continuous functions f : T → R will
be denote by R = R(T) = R(T,R). We define the
set R+ of all positive regressive elements of R by
R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0
for all t ∈ T}. If p is a regressive function, then the
generalized exponential function ep(t, s) ia define by
ep(t, s) = exp{

∫ t
s ξµ(τ)(p(τ)) △ τ} for all s, t ∈ T,

with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
0, if h = 0.

Let p, q : T → R be two regressive functions, we
define

p⊕q = p+q+µpq, ⊖p = − p

1 + µp
, p⊖q = p⊕p(⊖q)

If p ∈ R+, then ⊖p ∈ R+.
The generalized exponential function has the fol-

lowing properties.

Lemma 7. ([41]) Assume that p, q : T → R are two
regressive functions,then

(i) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(ii) 1/ep(t, s) = e⊖p(t, s);

(iii) ep(t, s) = 1/ep(s, t) = e⊖p(s, t);

(iv) ep(t, s)ep(t, r) = ep(t, r);

(v) [ep(t, s)]
△ = p(t)ep(t, s);

(vi) [ep(c, .)]
△ = −p[ep(c, .)]σ, for all c ∈ T;

(vii) d
dz [ez(t, s)] =

( ∫ t
s (1 + µ(τ)z)△ τ

)
ez(t, s).

Lemma 8. ([41]) Assume that f, g : T → R are ∆-
differentiable at t ∈ Tk. Then

(fg)△ = f△(t)g(t) + f(σ(t))g△

= g△f(t) + g(σ(t))f△(t).

Lemma 9. ([42]) For each t ∈ T, let N be a neigh-
borhood of t. Then, for V ∈ Crd(T,R+), define
D+V △(t) to mean that, given ε > 0, there exist a
right neighborhood Nε ∩ N of t such that, for each
s ∈ Nε, s > t,

1

u(t)
[V (σ(t))− V (t)− µ(t)f(t)] < D+V △(t) + ε,

where µ(t) = σ(t) − s. If t is right-scattered and
V (t) is continuous at t, this reduces to D+V △(t) =
V (σ(t))−V (t)

σ(t)−t .

Next, we introduce the Banach space which is
suitable for system (1) and (2). Let Ω = {x =
(x1, x2, . . . , xn)

T : |xi| < li, i = 1, 2, . . . ,m} is
an open bounded domain in Rm with smooth bound-
ary ∂Ω. Let Crd

(
T × Ω,Rn

)
be the set consisting of

all the vector function u(t, x) which is rd-continuous
with respect to t ∈ T and continuous with respect
to x ∈ Ω, respectively. For every t ∈ T and
x ∈ Ω, we define the set CtT = {u(t, ·) : u ∈
C(Ω,Rn)}. Then CtT is a Banach space with the norm
∥u(t, ·)∥ =

(∑n
i=1 ∥uj(t, ·)∥22

)1/2
, where ∥ui(t, ·)∥2

=
( ∫

Ω |ui(t, ·)|2dx
)1/2

. LetCrd[−τ, 0]∩
(
T×Ω,Rn

)
consist of all functions f(t, x) which map [−τ, 0] ∩
T × Ω into Rn and f(t, x) is rd-continuous with re-
spect to t ∈ [−τ, 0] ∈ T and continuous with respect
to x ∈ Ω, respectively. For every t ∈ [−τ, 0] ∩ T
and x ∈ Ω, we define the set Ct[−τ,0]∩T = {u(t, ·) :

u ∈ C(Ω,Rn)}. Then Ct[−τ,0]∩T is a Banach space

equipped with the norm ∥ϕ∥0 =
(∑n

i=1 ∥ϕi∥21
)1/2

,

where ϕ(t, x) =
(
ϕ1(t, x), ϕ2(t, x), . . . , ϕn(t, x)

)T
,

∥ϕi(t, ·)∥1 =
( ∫

Ω |ϕi(·, x)|2τdx
)1/2

, |ϕi(·, x)|τ =
sups∈T∩[−τ,0] |ϕi(s, x)|.

In order to achieve the globally exponential syn-
chronization, the following system (2) is the con-
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trolled slave system corresponding to (1).

ũ△i (t, x) =
m∑
k=1

∂
∂xk

(
aik

∂ũi
∂xk

)
− biũi(t, x)

+fi

(
n∑
j=1

cij ũj(t− τij , x) + Ii

)
+fi

(
n∧
j=1

pij ũj(t− τij , x) + Ii

)
+fi

(
n∨
j=1

qij ũj(t− τij , x) + Ii

)
+

n∑
j=1

dijυj +
n∧
j=1

Sijυj

+
n∨
j=1

Tijυj +miei(t, x), t ̸= tk,

△ũi(tk, x) = ũi(t
+
k , x)− ũi(t

−
k , x)

= ϑikũi(tk, x), t = tk, x ∈ Ω,
ũi(s, x) = ψi(s, x), (s, x) ∈ [−τ, 0]T × Ω,
ũi(t, x) = 0, (t, x) ∈ [0,∞)T × ∂Ω.

(2)

where ũ(t, x) =
(
ũ1(t, x), ũ2(t, x), . . . , ũn(t, x)

)T
,

ei(t, x) = ũi(t, x) − ui(t, x). mi is a positive con-
stant. ψ(t, x) =

(
ψ1(t, x), ψ2(t, x), . . . , ψn(t, x)

)T
∈ Crd

(
[−τ, 0]× Ω,Rn

)
.

On the globally exponential synchronization of
coupled neural networks (1) and (2), the following
definition is significant.

Definition 10. Coupled neural network (1) and (2)
is said to be globally exponentially synchronized, if
there exist a controlled input z(t, x) = (m1e1(t, x),
m2e2(t, x), . . . ,mnen(t, x))

T and a positive constant
α ∈ R+ and M ≥ 1 such that

∥e(t, ·)∥ = ∥ũ(t, ·)− u(t, ·)∥ ≤Me⊖α(t, 0), t ∈ T+,

where ũ(t, x) and u(t, x) are the solutions of system
(1) and (2), respectively, and satisfy boundary condi-
tions and initial conditions. α is called the degree of
exponential synchronization on time scales.

In order to prove the globally exponential syn-
chronization, we need introduce the following two
useful lemmas.

Lemma 11. ([31]) Let Ω be a cube |xi| < li(i =
1, 2, . . . ,m) and assume h(x) be a real-valued func-
tion belonging to C1(Ω) which vanish on the bound-
ary ∂Ω of Ω , i.e., h(x)|∂Ω = 0. Then∫

Ω
h2(x)dx ≤ l2i

∫
Ω

∣∣∣∣ ∂h∂xi
∣∣∣∣2dx

Lemma 12. ([25]) Suppose that u = (u1, u2, . . . ,
un)

T and ũ = (ũ1, ũ2, . . . , ũn)
T are the solutions to

system (1) and (2), respectively, then∣∣∣∣ n∧
j=1

pijfj
(
ũj
)
−

n∧
j=1

pijfj
(
uj
)∣∣∣∣

≤
n∑
j=1

|pij ||fj(ũj)− fj(uj)|.

∣∣∣ n∨
j=1

qijfj
(
ũj
)
−

n∨
j=1

qijfj
(
uj
)∣∣∣

≤
n∑
j=1

|qij ||fj(ũj)− fj(uj)|.

3 Main results
As usual in the theory of impulsive differential equa-
tions, at the points of impulse tk, k = 1, 2, . . . , ,
we assume that ui(tk, ·) ≡ ui(t

−
k , ·) and u̇i(tk, ·) ≡

u̇i(t
−
k , ·).
Inspired by [43], we construct an equivalent the-

orem between (1) and (3). Then we establish some
lemmas which are necessary in the proof of the main
results.

Throughout this paper, we always assume that

(H1) 0 < |ϑik| < 1, i = 1, 2, . . . , n, k ∈ N,
∞∑
k=1

ϑik

is uniformly absolute convergence.

(H2) The neurons activation fi is Lipschitz contin-
uous, that is, there exists a constant Fi > 0
such that |fi(ξ) − fi(η)| ≤ Fi|ξ − η|, for any
ξ, η ∈ R, i = 1, 2, . . . , n.

(H3) −
m∑
k=1

2aik
l2k

+2(mi−bi)+Kij+Kjie1⊕1(τji, 0) <

0, where Kij , Fi
∞∏
k=1

(1− |ϑik|)−1
n∑
j=1

∞∏
k=1

(1 +

|ϑjk|)
(
|cij |+ |pij |+ |qij |

)
, i = 1, 2, . . . , n.

For the sake of convenience, we will introduce the
simple notation by κik =

∏
0≤tk≤t

(1 + ϑik) (k =

1, 2, . . . ; i = 1, 2, . . . , n). Consider the following
non-impulsive system,

w△
i (t, x)

=

m∑
k=1

∂

∂xk

(
aik

∂wi
∂xk

)
− biwi(t, x)

κ−1
ik

[
+ fi

( n∑
j=1

cijκjkwj(t− τij , x) + Ii

)
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+fi

( n∧
j=1

pijκjkwj(t− τij , x) + Ii

)

+fi

( n∨
j=1

qijκjkwj(t− τij , x) + Ii

)
n∑
j=1

dijυj +
n∧
j=1

Sijυj +
n∨
j=1

Tijυj

]
,

(t, x) ∈ [0,∞)T × Ω, (3)

wi(s, x) = ϕi(s, x), (s, x) ∈ [−τ, 0]T × Ω,

wi(t, x) = 0, (t, x) ∈ [0,∞)T × ∂Ω,

We have the following lemma, which shows that sys-
tem (1) and (3) is equivalent.

Lemma 13. Suppose (H1) holds, then we have the
following.

(i) If wi(t, x) is a solution of (3), then ui(t, x) =∏
0≤tk<t

(1 + ϑik)wi(t.x) is a solution of (1).

(ii) If ui(t, x) is a solution of (1), then wi(t, x) =∏
0≤tk<t

(1 + ϑik)
−1ui(t, x) is a solution of (3).

Proof: The second result can be proved similarly,
so we only proof (i). For any x ∈ Ω, it is easy to see
that ui(t, x) =

∏
0≤tk<t(1+ϑik)wi(t, x) is absolutely

rd-continuous on the interval (tk, tk+1]T and for any
x ∈ Ω and t ̸= tk, k = 1, 2, . . . , we have

u∆i (t, x) = κikw
∆
i (t, x)

= κik

{ m∑
k=1

∂

∂xk

(
aik

∂wi
∂xk

)
− biwi(t, x)

+κ−1
ik

[
fi

( n∑
j=1

cijκjkwj(t− τij , x) + Ii

)

+fi

( n∧
j=1

pijκjkwj(t− τij , x) + Ii

)

+fi

( n∨
j=1

qijκjkwj(t− τij , x) + Ii

)

+
n∑
j=1

dijυj +
n∧
j=1

Sijυj +
n∨
j=1

Tijυj

]}

=

m∑
k=1

∂

∂xk

(
aik

∂ui
∂xk

)
− biui(t, x)

+fi

( n∑
j=1

cijuj(t− τij , x) + Ii

)

+fi

( n∧
j=1

pijuj(t− τij , x) + Ii

)

+fi

( n∨
j=1

qijuj(t− τij , x) + Ii

)

+
n∑
j=1

dijυj +
n∧
j=1

Sijυj +
n∨
j=1

Tijυj .

When tk ∈ {tk}∞k=1, for any x ∈ Ω,

ui(t
+
k , x) = lim

t→t+k

∏
0≤tj<t

(1 + ϑij)wi(t, x)

=
∏

0≤tj≤tk

(1 + ϑij)wi(t, x)

and

ui(tk, x) =
∏

0≤tj<tk

(1 + ϑij)wi(t, x)

so

ui(t
+
k , x) = (1 + ϑik)ui(tk),

which implies

∆ui(tk, x) = ϑikui(tk, x).

When (s, x) ∈ [−τ, 0]T × Ω,

ui(s, x) =
∏

0≤tj<s
(1 + ϑij)wi(s, x) = ϕi(s, x).

When (t, x) ∈ [0,∞]T × ∂Ω, wi(t, x) = 0, thus,

ui(t, x) =
∏

0≤tj<t
(1 + ϑij)wi(t, x) = 0.

The proof is complete. ⊓⊔
By Lemma 13, we can obtain the equivalent sys-

tem of the controlled slave system (2) corresponding
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to (1) as follows:

w̃△
i (t, x) =

m∑
k=1

∂
∂xk

(
aik

∂w̃i
∂xk

)
− biw̃i(t, x)

+κ−1
ik

[
fi

(
n∑
j=1

cijκjkw̃j(t− τij , x) + Ii

)
+fi

(
n∧
j=1

pijκjkw̃j(t− τij , x) + Ii

)
+fi

(
n∨
j=1

qijκjkw̃j(t− τij , x) + Ii

)
+

n∑
j=1

dijυj +
n∧
j=1

Sijυj +
n∨
j=1

Tijυj

+miEi(t, x)

]
, t ̸= tk, x ∈ Ω,

△w̃i(tk, x) = w̃i(t
+
k , x)− w̃i(t

−
k , x)

= ϑikw̃i(tk, x), t = tk, x ∈ Ω,
w̃i(s, x) = ψi(s, x), (s, x) ∈ [−τ, 0]T × Ω,
w̃i(t, x) = 0, (t, x) ∈ [0,∞)T × ∂Ω.

(4)

where w̃(t, x) =
(
w̃1(t, x), w̃2(t, x), . . . , w̃n(t, x)

)T
,

Ei(t, x) = w̃i(t, x) − wi(t, x). mi is a positive con-
stant. ψ(t, x) =

(
ψ1(t, x), ψ2(t, x), . . . , ψn(t, x)

)T
∈ Crd

(
[−τ, 0]× Ω, Rn

)
.

The following Lemma 14 is useful to prove our
main results.

Lemma 14. (see[44]) Assume that 0 < |ak| < 1 (k =
0, 1, 2, . . .), and the series of number

∑∞
k=0 ak

is absolute convergence, then the infinite products∏∞
k=0(1−|ak|)−1,

∏∞
k=0(1+ak) and

∏∞
k=0(1+ |ak|)

are convergent and
∏∞
k=0(1 − |ak|)−1 ≥

∏∞
k=0(1 +

ak)
−1,
∏∞
k=0(1 + |ak|) ≥

∏∞
k=0(1 + ak).

Theorem 15. Assume (H1)-(H3) hold. Then the con-
trolled slave system (2) is globally exponentially syn-
chronous with the master system (1).

Proof: From (3) and (4), we obtain the error system
(5)-(8) as follows:

E△
i (t, x)

=

m∑
k=1

∂

∂xk

(
aik

∂Ei
∂xk

)
+ (mi − bi)Ei(t, x)

+κ−1
ik

[
fi

( n∑
j=1

cijκjkw̃j(t− τij , x) + Ii

)

−fi
( n∑
j=1

cijκjkwj(t− τij , x) + Ii

)

+fi

( n∧
j=1

pijκjkw̃j(t− τij , x) + Ii

)

−fi
( n∧
j=1

pijκjkwj(t− τij , x) + Ii

)

+fi

( n∨
j=1

qijκjkw̃j(t− τij , x) + Ii

)

−fi
( n∨
j=1

qijκjkwj(t− τij , x) + Ii

)]
,

t ̸= tk, x ∈ Ω, (5)

∆Ei(tk, x) = ϑikw̃i(tk, x)− ϑikwi(tk, x)

= ϑikEi(tk, x), k = 1, 2, . . . , x ∈ Ω, (6)

Ei(s, x) = w̃i(s, x)− wi(t, x)

= ψi(s, x)− ϕi(s, x),

(s, x) ∈ [−τ, 0]T × Ω, (7)

and

Ei(t, x) = 0, (t, x) ∈ [0,∞)T × ∂Ω. (8)

Calculating the delta derivation of ∥Ei(t, ·)∥22 along
the solution of (5), we can obtain

(∥Ei(t, ·)∥22)△ =

∫
Ω
((Ei(t, x))

2)△dx

=

∫
Ω

(
Ei(t, x) + Ei(σ(t), x)

)
(Ei(t, x))

△dx

=

∫
Ω

(
2Ei(t, x) + µ(t)(Ei(t, x))

△)(Ei(t, x))△dx

= 2

∫
Ω
Ei(t, x)(Ei(t, x))

△dx

+µ(t)

∫
Ω

(
(Ei(t, x))

△)2dx
= 2

m∑
k=1

∫
Ω

∂

∂xk
Ei(t, x)

(
aik

∂Ei
∂xk

)
dx

+2

∫
Ω
(mi − bi)(Ei(t, x))

2dx+ 2κ−1
ik ×∫

Ω
Ei(t, x)

{
fi

( n∑
j=1

cijκjkw̃j(t− τij , x) + Ii

)

−fi
( n∑
j=1

cijκjkwj(t− τij , x) + Ii

)

+fi

( n∧
j=1

pijκjkw̃j(t− τij , x) + Ii

)

−fi
( n∧
j=1

pijκjkwj(t− τij , x) + Ii

)

+fi

( n∨
j=1

qijκjkw̃j(t− τij , x) + Ii

)
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−fi
( n∨
j=1

qijκjkwj(t− τij , x) + Ii

)}
dx

+µ(t)∥(ei(t, ·))△∥22, i = 1, 2, . . . , n (9)

Employing Green formula [28], Dirichlet boundary
condition and Lemma 11, we have for i = 1, 2, . . . , n,

m∑
k=1

∫
Ω
Ei(t, x)

∂

∂xk

(
aik

∂Ei
∂xk

)
dx

=

m∑
k=1

∫
∂Ω
aik

∂Ei(t, x)

∂nk
Ei(t, x)dS

−
m∑
k=1

∫
Ω
aik
(∂Ei(t, x)

∂xk

))2
dx

= −
m∑
k=1

∫
Ω
aik
(∂Ei(t, x)

∂xk

))2
dx

≤ −
m∑
k=1

∫
Ω

aik
l2k

(
Ei(t, x)

)2
dx. (10)

Using (9), (10), Lemma 14, conditions (H1)-(H3) and
Hölder inequality, we get

(∥Ei(t, ·)∥22)△

≤ −
m∑
k=1

2aik
l2k

∥Ei(t, ·)∥22 + 2(mi − bi)∥Ei(t, ·)∥22

+2Fiκ
−1
ik

n∑
j=1

κjk
[
|cij |+ |pij |+ |qij |

]
×∥Ei(t, ·)∥2∥Ej(t− τij , ·)∥2
+µ(t)∥(Ei(t, ·))∆∥22

= −
m∑
k=1

2aik
l2k

∥Ei(t, ·)∥22 + 2(mi − bi)∥Ei(t, ·)∥22

+2Fiκ
−1
ik

n∑
j=1

κjk
[
|cij |+ |pij |+ |qij |

]
×∥Ei(t, ·)∥2∥Ej(t− τij , ·)∥2
+µ(t)q(t)∥Ei(t, ·)∥22, (11)

where ∥(Ei(t, ·))△∥22 = q(t)∥Ei(t, ·)∥22 ≥ 0, i =
1, 2, . . . , n.

If condition (H3) holds, we can always choose a
positive number β > 0 (may be sufficient small) such
that for 1 = 1, 2, . . . , n,

0 > −
m∑
k=1

2aik
l2k

+ 2(mi − bi) +Kij

+Kjie1⊕1(τji, 0) + β. (12)

Consider the following function,

qi(yi)

= yi ⊕ yi −
m∑
k=1

2aik
l2k

+ 2(mi − bi) +Kij

+Kjie1⊕1(τji, 0) +
ν(yi)µ(t)q(t)

eyi⊕yi(σ(t), 0)

×max
{
e(ν(yi)−1)µ(t)q(t)∥Ei(t,·)∥22(t, 0),

eyi⊕yi(σ(t), 0)
}
, (13)

where ν(yi) =
∫ yi
0 (eyi−s/(yi − s)2)ds, i = 1, 2,

. . . , n. In the light of (12), we get qi(0) < −β < 0
and qi(yi) is continuous for yi ∈ [0,+∞). More-
over, qi(yi) → +∞ as yi → +∞, thereby there
exist constants ϵ∗i ∈ (0,+∞) such that qi(ϵ∗i ) = 0
and qi(ϵi) < 0, for ϵi ∈ (0, ϵ∗i ) ∩ (0, 1). Choosing
ϵ = min

1≤i≤n
ϵi, obviously 1 > ϵ > 0, we have for

i = 1, 2, . . . , n,

qi(ϵ)

= ϵ⊕ ϵ−
m∑
k=1

2aik
l2k

+ 2(mi − bi)

+Kjie1⊕1(τji, 0) +Kij

+
ν(ϵ)µ(t)q(t)

eϵ⊕ϵ(σ(t), 0)
×max

{
eϵ⊕ϵ(σ(t), 0),

e(ν(yi)−1)µ(t)q(t)∥Ei(t,·)∥22(t, 0)
}
≤ 0. (14)

Now consider the Lyapunov functional

V (t, E(t))

=

n∑
i=1

{
eϵ⊕ϵ(σ(t), 0)∥Ei(t, ·)∥22

+Kij

∫ t

t−τij
eϵ⊕ϵ(σ(s+ τij , 0))∥Ei(s, ·)∥22∆s

+e(ν(ϵ)−1)µ(t)q(t)∥Ei(t,·)∥22(t, 0)

}
. (15)

Calculating D+V △(t, E(t)) along (5) and noting that
d
dz [ez(t, s)] = (

∫ t
s

1
1+µ(τ)z∆τ)(ez(t, s) > 0 if and

only if z ∈ R+ (that is, ez(t, s) is increasing with
respect to z if and only if z ∈ R+), we have

D+V △(t, E(t))

=

n∑
i=1

{
(ϵ⊕ ϵ)eϵ⊕ϵ(σ(t), 0)∥Ei(t, ·)∥22

+eϵ⊕ϵ(σ(t), 0)(∥Ei(t, ·)∥22)△

+
(
(ν(ϵ)− 1)µ(t)q(t)∥Ei(t, ·)∥22

)
×e(ν(ϵ)−1)µ(t)q(t)∥Ei(t,·)∥22(t, 0)

+Kij

[
eϵ⊕ϵ(σ(t+ τij , 0))∥Ej(t, ·)∥22
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−eϵ⊕ϵ(σ(t, 0))∥Ej(t− τij , ·)∥22
]}

≤
n∑
i=1

{
(ϵ⊕ ϵ)eϵ⊕ϵ(σ(t), 0)∥Ei(t, ·)∥22

+eϵ⊕ϵ(σ(t), 0)

(
−

m∑
k=1

2aik
l2k

∥Ei(t, ·)∥22

+2(mi − bi)∥Ei(t, ·)∥22 +Kij

(
∥Ei(t, ·)∥22

+∥Ej(t− τij , ·)∥22
)
+ µ(t)q(t)∥Ei(t, ·)∥22

)
+
(
(ν(ϵ)− 1)µ(t)q(t)∥Ei(t, ·)∥22

)
×e(ν(ϵ)−1)µ(t)q(t)∥Ei(t,·)∥22(t, 0)

+Kij

[
eϵ⊕ϵ(σ(t+ τij , 0))∥Ej(t, ·)∥22

−eϵ⊕ϵ(σ(t, 0))∥Ej(t− τij , ·)∥22
]}

≤
n∑
i=1

{
(ϵ⊕ ϵ)eϵ⊕ϵ(σ(t), 0)∥Ei(t, ·)∥22

+eϵ⊕ϵ(σ(t), 0)

(
−

m∑
k=1

2aik
l2k

∥Ei(t, ·)∥22

+2(mi − bi)∥Ei(t, ·)∥22 +Kij |Ei(t, ·)∥22
)

+µ(t)q(t)∥Ei(t, ·)∥22max
{
eϵ⊕ϵ(σ(t), 0),

e(ν(ϵ)−1)µ(t)q(t)∥Ei(t,·)∥22(t, 0)
}

+
(
(ν(ϵ)− 1)µ(t)q(t)∥Ei(t, ·)∥22

)
×max

{
e(ν(ϵ)−1)µ(t)q(t)∥Ei(t,·)∥22(t, 0),

eϵ⊕ϵ(σ(t), 0)
}
+ eϵ⊕ϵ(σ(t), 0)Kijeϵ⊕ϵ(τij , 0)

×∥Ej(t, ·)∥22
}

≤ eϵ⊕ϵ(σ(t), 0)
n∑
i=1

∥Ei(t, ·)∥22
{
ϵ⊕ ϵ−

m∑
k=1

2aik
l2k

+2(mi − bi) +Kij +Kjie1⊕1(τji, 0)

+
ν(ϵ)µ(t)q(t)

eϵ⊕ϵ(σ(t), 0)
×max

{
eϵ⊕ϵ(σ(t), 0),

e(ν(yi)−1)µ(t)q(t)∥Ei(t,·)∥22(t, 0)
}}

≤ 0. (16)

Combining (15) and (16), we get for t ∈ [0,+∞)T,

eϵ⊕ϵ(t, 0)∥E(t, .)∥22

= eϵ⊕ϵ(t, 0)

n∑
i=1

∥Ei(t, ·)∥22

≤ V (t, E(t)) ≤ V (0, E(0))

=
n∑
i=1

{
∥Ei(0, ·)∥22 + 1

+Kij

∫ 0

−τij
eϵ⊕ϵ(σ(s+ τij , 0))∥Ei(s, ·)∥22∆s

}
≤

n∑
i=1

{
∥ψi − ϕi∥21 + 1 +Kij∥ψi − ϕi∥21

×
∫ 0

−τij
eϵ⊕ϵ(σ(s+ τij , 0))∆s

}
= ∥ψ − ϕ∥20 + n+ ∥ψ − ϕ∥20

×
n∑
i=1

Kij

∫ 0

−τij
eϵ⊕ϵ(σ(s+ τij , 0))∆s

which imply that

∥E(t, ·)∥ ≤M1e⊖ϵ(t, 0), (17)

where

M1 =

(
∥ψ − ϕ∥20 + n+ ∥ψ − ϕ∥20

n∑
i=1

Kij

×
∫ 0

−τij
eϵ⊕ϵ(σ(s+ τij , 0))∆s

) 1
2

≥ 1.

By Lemma 13 and (17), we have

∥e(t, ·)∥22 =
n∑
i=1

∥ei(t, ·)∥22 =
n∑
i=1

∥ũi − ui∥22

=
n∑
i=1

∥
∏

0≤tk≤t
(1 + ϑik)(w̃i − wi)∥22

=
n∑
i=1

∥
∏

0≤tk≤t
(1 + ϑik)Ei(t, ·)∥22

≤ Π

n∑
i=1

∥Ei(t, ·)∥22 = Π2∥E(t, ·)∥2

≤ Π2M2
1 (e⊖ϵ(t, 0))

2

which indicate that

∥e(t, ·)∥ ≤Me⊖ϵ(t, 0),

here Π = max1≤i≤n{
∏∞
k=1(1 + |ϑik|)}. Obviously,

Π > 1, M > 1. According to the Definition 10, we
obtain the controlled slave system (2) is globally ex-
ponentially synchronous with the master system (1)
on time scales. The proof is complete. ⊓⊔
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4 Illustrative example
Consider the following two neuron reaction-diffusion
FNNs with time-delays and impulses on time scales:

u△i (t, x) =
m∑
k=1

∂
∂xk

(
aik

∂ui
∂xk

)
− biui(t, x)

+fi

(
n∑
j=1

cijuj(t− τij , x) + Ii

)
+fi

(
n∧
j=1

pijuj(t− τij , x) + Ii

)
+fi

(
n∨
j=1

qijuj(t− τij , x) + Ii

)
+

n∑
j=1

dijυj +
n∧
j=1

Sijυj

+
n∨
j=1

Tijυj , t ̸= tk, x ∈ Ω,

△ui(tk, x) = ui(t
+
k , x)− ui(t

−
k , x)

= ϑikui(tk, x), t = tk, x ∈ Ω,
ui(s, x) = ϕi(s, x), (s, x) ∈ [−τ, 0]T × Ω,
ui(t, x) = 0, (t, x) ∈ [0,∞)T × ∂Ω,

(18)

the controlled slave system corresponding to (18) can
be described as follows:

ũ△i (t, x) =
m∑
k=1

∂
∂xk

(
aik

∂ũi
∂xk

)
− biũi(t, x)

+fi

(
n∑
j=1

cij ũj(t− τij , x) + Ii

)
+fi

(
n∧
j=1

pij ũj(t− τij , x) + Ii

)
+fi

(
n∨
j=1

qij ũj(t− τij , x) + Ii

)
+

n∑
j=1

dijυj +
n∧
j=1

Sijυj

+
n∨
j=1

Tijυj +miei(t, x),

t ̸= tk, x ∈ Ω,
△ũi(tk, x) = ũi(t

+
k , x)− ũi(t

−
k , x)

= ϑikũi(tk, x), t = tk, x ∈ Ω,
ũi(s, x) = ψi(s, x), (s, x) ∈ [−τ, 0]T × Ω,
ũi(t, x) = 0, (t, x) ∈ [0,∞)T × ∂Ω.

(19)

where f1(v) = f2(v) =
ev−e−v

ev+e−v ,T = T1
∪

N2,T1 =∪∞
n=0[n

2 + 1
4 , (n + 1)2 − 1

4 ],T2 = {n2 : n =

0, 1, 2, 3, . . .}, tk = k2+k− 1
2 (k = 0, 1, 2, . . .), ϑik =

(−1)i+k

2k
,Ω = {x : |xi| < 1, i = 1, 2}, τij = 1(i, j =

1, 2), and I = (I1, I2) is the constant input vec-
tor. Obviously,

∑∞
k=1

(−1)i+k

2k
is uniformly absolute

convergence. fj(v) satisfies Lipschitz condition with

Fj = 1. Let(
a11 a12
a21 a22

)
=

(
0.7 0.4
0.2 0.8

)
,

(
c11 c12
c21 c22

)
=

(
0.4 0.5
0.6 0.1

)
,(

p11 p12
p21 p22

)
=

(
0.1 0.2
0.3 0.5

)
,(

q11 q12
q21 q22

)
=

(
0.2 0.1
0.7 0.8

)
,(

b1
b2

)
=

(
11
10

)
,

(
m1

m2

)
=

(
2
0.5

)
,

Noting that ln(1 − x) > x and ln(1 + x) < x when
0 < x < 1, we get

−
∞∑
k=1

ln(1− |ϑik|) = −
∞∑
k=1

ln(1− 1

2k
)

< −
∞∑
k=1

1

2k
= −1,

∞∑
k=1

ln(1 + |ϑik|) =
∞∑
k=1

ln(1 +
1

2k
) <

∞∑
k=1

1

2k
= 1,

∞∏
k=1

(1− |ϑik|)−1 <
1

e
,

∞∏
k=1

(1 + |ϑik|) < e.

By simple calculation, we have

σ(t) =

{
t, t ∈ T1;
(
√
t+ 1)2, t ∈ T2.

µ(t) =

{
0, t ∈ T1;
2
√
t+ 1, t ∈ T2.

e1(t, 0) =

{
et, t ∈ T1;
2
√
t(
√
t)!, t ∈ T2.

e1⊕1(t, 0) = (e1(t, 0))
2 =

{
e2t, t ∈ T1;
2t[(

√
t)!]2, t ∈ T2.

K1j = F1

∞∏
k=1

(1− |ϑ1k|)−1
n∑
j=1

∞∏
k=1

(1 + |ϑjk|)

×
(
|c1j |+ |p1j |+ |q1j |

)
< 1.5,

K2j = F2

∞∏
k=1

(1− |ϑ2k|)−1
n∑
j=1

∞∏
k=1

(1 + |ϑjk|)

×
(
|c2j |+ |p2j |+ |q2j |

)
< 3,
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Kj1 = Fj

∞∏
k=1

(1− |ϑjk|)−1
n∑
j=1

∞∏
k=1

(1 + |ϑ1k|)

×
(
|cj1|+ |pj1|+ |qj1|

)
< 2.3,

Kj2 = F2

∞∏
k=1

(1− |ϑjk|)−1
n∑
j=1

∞∏
k=1

(1 + |ϑ2k|)

×
(
|cj2|+ |pj2|+ |qj2|

)
< 2.2,

−
2∑

k=1

2a1k
l2k

+ 2(m1 − b1) +K1j

+Kj1e1⊕1(τj1, 0)

≤ −
2∑

k=1

2a1k
l2k

+ 2(m1 − b1) +K1j

+Kj1max{e2, 2} < −18.7 + 2.3e2

≈ −1.67 < 0,

−
2∑

k=1

2a2k
l2k

+ 2(m2 − b2) +K2j

+Kj2e1⊕1(τj2, 0)

≤ −
2∑

k=1

2a2k
l2k

+ 2(m2 − b2) +K2j

+Kj2max{e2, 2} < −18 + 2.2e2

≈ −0.42 < 0.

Therefore we verified that the conditions (H1)-(H3)
of Theorem 15 hold. Thus It follows from Theorem
15 that system (18) and system (19) are globally ex-
ponentially synchronized.

5 Conclusions
Artificial neural networks have complex dynamical
behaviors such as stability, synchronization, almost
periodic attractors, etc. The study on the neural net-
works has attracted much attention because of its po-
tential applications such as robust stability, associa-
tive memory, image processing, pattern recognition,
optimization calculation, information processing, etc..
Specially, Synchronization have attracted much atten-
tion for the important applications in varies aries. The
principle of drive-response synchronization is this: a
driver system sent a signal through a channel to a re-
sponder system, which uses this signal to synchro-
nize itself with the driver. In this paper, we study
the globally exponential synchronization of delayed

reaction-diffusion static recurrent FNNs with Dirich-
let boundary conditions in the continuous and discrete
conditions uniformly. For example, If choose T = R,
then σ(t) = t, µ(t) = 0. In this case, system (1)
is the continuous delayed static FNNs. If T = Z,
then µ(t) = 1, system (1) is the discrete delayed static
FNNs. what’s more, system (1) is good model which
handle many problems such as predator-prey forecast
or optimizing of goods output. In addition, the our
results obtained are new and interesting and the our
methods can be used to study the synchronization for
other types of neural network system.
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